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Shell Analysis and Effective Disorder in a 2D Froth
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The static and evolutionary properties of two-dimensional cellular structures, or
froths, are discussed in the light of recent work on structuring of the froth into
concentric shells. Of interest is the dual role of a topological dislocation
(``defect'') in an otherwise uniform froth, considered both as a source of disorder
and also as a source generating a shell-structured froth. We present simulations
on an initially uniform hexagonal froth. A defect is introduced by forcing either
a T1 or T2 process in the stable structure, after which the froth is allowed to
evolve according to von Neumann's law. In the first case, topological inclusions
are found in the first few layers early in the evolution. In the second case, no
inclusions appear over the entire evolutionary period. The growing disorder (as
measured by the second moment of the side distribution, +2) is isotropic. For
the special case of a T2-formed froth in a uniform network, the SSI structure is
retained with +2{0 only for the zeroth, first, and second layers. The ratio
between topological perimeter and radius of the shells is close to 6, the value for
a hexagonal froth.

KEY WORDS: 2D froth; shell-structure analysis; topological dislocation;
shell-structured inflatability; topological inclusion; froth dynamics.

1. INTRODUCTION

Random, space-filling cellular structures occur commonly in nature, e.g.,
Weaire and Rivier (1984), Stavans (1993), Thiele et al. (1997) and referen-
ces therein. The soap froth is the archetype for two-dimensional cellular
patterns and is topologically stable, with three sides meeting at a vertex.
The steady-state evolution of the froth has been characterised by laws
describing the statistics of cell area, Lewis (1928), the growth rate of
n-sided cells, von Neumann (1952), and scaling probabilities of cells,
Stavans and Glazier (1989). Initially, correlation effects were assumed to be
small and were considered to be almost completely described by the
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Aboav�Weaire law for nearest-neighbour correlation, Aboav (1970),
Weaire (1974). Here, the average number of neighbours of an n-sided cell
is given as m(n)=(6&a)+(6a++2)�n, with +2 , the second moment of
the side distribution, f (n), and a the Aboav�Weaire parameter. However,
more detailed topological correlations have recently been derived, based on
analysis of the froth as a system of concentric shells, which can be
generated recursively, Aste et al. (1996a), Aste and Rivier (1997), Ohlen-
busch et al. (1997). In particular, Dubertret et al. (1998) have shown, by
maximum entropy arguments, that there is a linear topological correlation
between two cells in a foam (or froth) in statistical equilibrium.

Shell-structure analysis is concerned with the definition of topological
distance in a froth, where the distance j between any two cells, is the
smallest number of edges crossed by paths connecting one to the other,
Aste et al. (1996a). Any cell may be taken as the ``germ'' cell j=0 and the
froth may be viewed in terms of concentric layers or shells of equidistant
( j=1, 2,...) cells, s.t. the j th layer of cells at distance j encloses layers j&1,
j&2,..., 0 and includes all cells which are themselves neighbours of at least
one cell at distance j+1. Any cell which does not obey this condition may
be said to lie between layers j&1 and j and represents a localised defect
inclusion with respect to the froth ``skeleton.'' Any froth, without defect
inclusions, is called shell-structured inflatable (SSI ), Aste et al. (1996a) and,
in this case, shell-structure and skeleton coincide. Even though symmetry
and periodicity information are absent, analysis of the shell-structure
provides a powerful means of studying disordered froths.

By definition, no disorder is present in a 2-D uniform (hexagonal)
froth, which is thus in mechanical equilibrium, (the state of minimum
energy). A disordered froth typically undergoes topological changes, in
order to achieve a state of statistical equilibrium, for which entropy is
maximised, Dubertret et al. (1998). Any 2-D froth, not having minimum
energy, will evolve according to von Neumann's Law, with an n-sided cell
shrinking or expanding at a rate proportional to n&6, von Neumann
(1952). In the asymptotic steady state, topological properties are invariant,
with +2 achieving a constant value and with the average cell area propor-
tional to the square root of the time. Further, +2 provides an indicator of
the level of disorder in the froth, which affects behaviour during the tran-
sient period, Ruskin and Feng (1997), together with the fraction of initial
cells remaining. These are ``survivors'' of the evolution, i.e., cells which are
present at a given time tf and were also present at time ti , ti<tf , Levitan
et al. (1994), Levitan and Domany (1996). Clearly, any uniform hexagonal
froth may have its mechanical equilibrium perturbed by the introduction of
one or more topological dislocations, where each dislocation replaces one
or more hexagonal cells. Of interest is the dual role of such a ``defect,'' both
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as a disorder source and as a germ for the shell structure and the effect of
this initial choice on the topological properties and froth evolution.

2. METHOD

In order to examine these questions, we have used the direct simula-
tion approach of Weaire and Kermode (1983) to seed a uniform,
(hexagonal), froth with localised disorder. A double dislocation or ``defect''
in this sense may be achieved by suppression of an edge in the original
structure or by switching a side from one cell to its neighbour. Clearly,
more than one operation of this kind may be used to randomly seed multi-
ple dislocations, but we concentrate predominantly on the case for a single
operation. Two types of topological double dislocations of the froth have
been considered. The first is the pentagon�heptagon pairing, caused by
forcing a T1 process, (neighbour switching) and where the central germ cell
is considered to be the larger member. The second choice of germ cell is the
eight-sided single cell, formed by a forced T2 process, (cell elimination).
These are illustrated in Figs. 1 and 2 respectively. Clearly, any cell within
the froth could be chosen as the centric germ cell to build up the shell
structure. However, since most evolutionary properties are based on the
contribution of ``survivors'' at different stages, it is more reasonable in a
dynamic investigation to choose a survivor, rather than an eliminated cell
to represent the original 0th centre. The choice of survivor cells, given here,
is convenient for observing changes among shell layers during the froth
evolution, although the theory applies equally to any other choice.

The froths generated are interesting, but rather special cases, in that
the disorder is not uniform throughout the froth as a whole, but is highly

Fig. 1. SSI froth formed by T1 process.
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Fig. 2. SSI froth formed by T2 process.

localised and certainly not generic. The annulus of disorder is only a few
cells in width and is reasonably typical of a normal froth. Outside this
annulus, there is complete (hexagonal) order, with the froth in mechanical
equilibrium. Inside the annulus, however, there is either a single large cell
or a cluster of cells, larger than the others, with characteristics which
asymptotically dominate the froth behaviour, Levitan (1994), Ruskin and
Feng (1995). Departure from normal scaling for this region has been
reported for finite systems and extensive simulations have been performed
to investigate transience in relation to localised disorder, Jiang et al.
(1995), Ruskin and Feng (1995), (1997) and Levitan and Domany (1996).
It should be noted that these specialised structures contrast with a Voronoi
froth, (Fig. 3), which is non-SSI, but also artificial, with high disorder
levels and anisotropy of cells, compared to a typical froth, Boots (1982),
Rivier (1985).

In the case of an SSI froth, the logistic map, Rivier and Aste (1996),
used to give the number of cells in successive layers and to obtain average
topological properties, can be written

Kj+1=sjKj&Kj&1 ( j�1) (1)

Qj=6&Kj+1+Kj (2)

where Kj is the total number of cells in the layer j, and sj=mj&4 is a con-
stant, (mj is the average number of sides per cells in the layer j). The map
starts with K0=1 and K1=n, the no. of sides (or more generally
neighbours) to the central cell. Equation (1) is due to Aste et al. (1996a)
and Eq. (2) is a special case of the more general expression for topological
charge, Qj from the ``Gauss'' theorem, given by Rivier and Aste (1996).
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Fig. 3. Non-SSI froth formed by Voronoi network. Shades of grey indicate the different shell
layers and topological inclusion is shown.

(Writing the Kj as V +
j , V &

j for outward and inward pointing vertices
respectively on the closed line separating layers, one recovers the general
form, which applies to any froth, whether SSI or not).

3. RESULTS

We report on the dynamics of the froth evolution in terms of the alter-
native method of analysing defect growth, linking this with the predictions
of the shell map approach. Effective disorder is seeded by a single T1 or T2
topological dislocation, as described previously, and details of the simula-
tion are as given in Ruskin and Feng (1995). In the present case, both
seeded-disorder structures are initially SSI, according to the definitions
given by Aste et al. (1996a). For the initial condition, it is obvious that the
topological charge Qj , (Eq. (2)), is constant from the second layer for both
cases. Thus

Kj+1&Kj=Kj&Kj&1 for j>1 (3)

Qj=0 for j>1 (4)

Equation (3) holds for both SSI and non-SSI froth and is the result of
applying Eq. (1).

Following the very early period of evolution, the behaviour observed
in the SSI froth formed by a T1 as opposed to a T2 process is markedly
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different. In particular, for the T1-formed froth, topological inclusion
occurs very quickly in the first few layers, so that the structure becomes
non-SSI for the remainder of the evolution, although the percentage of
topological inclusions is small. However, for the T2-formed SSI froth, the
basic structure remains SSI for the entire evolutionary period. No topologi-
cal inclusions can be observed at any stage. Figures 4 and 5 show the froth
evolution at a later stage (130 time steps) for T1 and T2-formed froth
respectively, while the second moment, +2* , (excluding the large cell(s)),
reflects a quasi-scaling state in both cases, as noted by Ruskin and Feng
(1996). Also, the number of cells in a layer increases linearly after the first
few layers, so that for both germ cell choices, the relationship for Kj holds
with

Kj+1=Kj+6 for j>p (5)

where p depends on centre cell choice; p=3 for large centre cell in T2-
formed froth. (Linear growth of the number of cells has also been observed
in recent experimental work, Szeto and Tam (1996)). Note that both
correlation and self energies vanish for hexagonal cells.

Clearly, for initially SSI froths, +2 will change during the evolution.
For most cases, inclusion will occur at some stage and the froth becomes

Fig. 4. The evolution of T1-formed non-SSI froth (after 130 time steps) with inclusion
between layers j=1 and j=2. Shades of grey indicate the different shell layers.
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Fig. 5. The evolution of T2 formed SSI froth (after 130 time steps) without inclusion. Shades
of grey again indicate the different shell layers. Small soon-to-disappear cells form part of the
layer which immediately surrounds the large central cell (NW and NNE corners).

non-SSI. The only exception appears to be that of the single large cell,
formed by a T2 process in a uniform froth. Here the SSI structure is
retained with +2{0 only for the zeroth, first and second layers. Thus, the
original T2-formed disordered froth appears to be a valid case for a
dynamic SSI froth. In the limit, as t � �, the defect or central germ cell(s)
consumes the froth and the number of its neighbours, (i.e. sides here),
increases. At a given time t, the topological charge therefore consists of a
large, negative contribution from the zeroth cell, a large number of smaller,
mostly positive contributions from the narrow annulus and a zero-charge
contribution from the outer hexagonal structure.

It seems intuitively clear that the perimeter should grow linearly with
the topological radius and for a circular annulus the slope will be 2?,
(although Aste et al. (1996b) measured a value of 9). In fact, disorder
makes the slope much larger than 2?, in general, (see Aste (1997), Rivier
(1997)). Including earlier layers for the SSI froth, we find the slope for the
T2-formed example to be around 6.8�6.9, where the radius is based on the
exscribed circle of the given layer. This is not too surprising, since the
nature of the T2-formed defect means that near-circular layers are preserved
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in the froth evolution so that the ratio between topological perimeter and
radius of the shells is close to the value for a hexagonal froth.

4. DISCUSSION

For initial correlation studies on these structures, Aste et al. (1996b)
gave explicit expressions for Kj and Qj for minimal correlation length and
an approximate expression for the Aboav�Weaire law for higher shell
numbers (!) expressed as

mj Kjr6Kj+(2&a) +2 ( j�!) (6)

which is trivial for the second term on the right hand side =0. The authors
suggested that, in the asymptotic limit (for j), a froth can only be free of
defects if +2=0 or a=2, (although the latter is noted to be unrealistic).
A more formal expression, relating the two-cell correlators, A1(k, n), for
nearest-neighbours in natural foams to n } m(n), is given, Dubertret et al.
(1998), as

n } m(n)=: k kfk A1(k, n) (7)

where A1(k, n) is independent of the probability fk that a k-cell exists
and fkA1(k, n) is the average number of k-cells, nearest neighbours to the
n-germ cell. (The authors have generalised this for topological correlations
in froths as a function of the layer distance j, with the Aj (k, n) found to be
linear in k and n).

In terms of correlation effects, the Aboav�Weaire law parameter, a, is
of the order of 1 in most natural froths, (although not for T1-formed, or
Voronoi Poisson froths for example, Peshkin et al. (1991), Boots (1982)).
For the T2-formed froth, +2 does not, however, achieve a constant value,
so that the approximate expression for the Aboav�Weaire law for second
and further neighbours (Aste et al. (1996b)), does not apply. However, the
total number of first neighbours is always known, which suggests that the
more formal expressions relating two-cell correlations, Dubertret et al.
(1998), may provide more insight on correlations between higher shell
numbers. (We further comment that, although a special case, the T2-formed
structure is of some interest experimentally,��see e.g., Abdelkader and
Earnshaw (1997) for recent work).

The suggestion that +2=0 is necessary for a defect-free froth is clearly
incorrect, since we do see an SSI froth with +2{0 in the studies described
here. The anomaly appears to be due to the condition of j>2, (quoted Aste
et al. (1996b)), which assumes that +2 for the whole system is essentially
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that of +2 , ( j>2). In fact, there are two possibilities for +2 when j�2:

(i) if +2=0 for j=0, 1, 2, then, +2=+2( j�2)++2( j>2)=+2( j>2)

(ii) if +2{0 for j=0, 1, 2, then, +2=+2( j�2)++2( j>2){+2( j>2)

The first condition relates to the mechanical equilibrium of the hexagonal
network. The topological energy is always positive, with cells having
correlation and self energies, Rivier (1997), and the former vanishing for
the hexagonal, +2=0, case only.

Based on structuring the froth into concentric shells, non-SSI froth
with a small percentage of inclusions is expected to have similar properties
to that of SSI froth. Considering the whole dynamic evolution, we expect
statistical distributions to be very similar for both T1 and T2-formed
froths, (Ruskin and Feng (1995), Jiang et al. (1995)). Nevertheless, these
are aggregate measures and implications for the overall percentage of
inclusions must be taken into account, Aste (1997). We also considered,
therefore, more than one topological dislocation or introduction of a non-
hexagonal cell formed by a T2 process, (i.e., multiple defects), and found
that local defect inclusions will occur at some stage of the evolution. The
SSI property is not retained indefinitely and the froth will become non-SSI
at some point.

5. CONCLUSIONS

Direct simulation studies indicate that, for a T1-formed SSI froth,
topological inclusion rapidly occurs in the first few layers so that the struc-
ture becomes non-SSI for the remainder of the evolution, although the per-
centage of local inclusions is small. For the T2-formed SSI froth, the basic
structure remains SSI for the entire evolutionary period and is the only
exception with +2{0, only for the zeroth, first and second layers. This is
the only exception that we can find to the general rule that topological
inclusions will occur at some stage of the froth evolution.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the referee for the
particularly helpful comments.

REFERENCES

1. A. Abdelkader and J. C. Earnshaw, Phys. Rev. E 56:3251 (1997).
2. D. A. Aboav, Metallography 3:383 (1970).

271Shell Analysis and Effective Disorder in a 2D Froth



3. T. Aste, Foams and Emulsions, J. F. Sadoc and N. Rivier, eds. (Kluwer, 1997).
4. T. Aste, D. Boose, and N. Rivier, Phys. Rev. E 53:6181 (1996a).
5. T. Aste, K. Y. Szeto, and W. Y. Tam, Phys. Rev. E 54:5482 (1996b).
6. T. Aste and N. Rivier, in Shape Modelling and Applications (IEEE Computer Society

Press, 1997), pp. 2�9.
7. B. N. Boots, Metallography 15:53 (1982).
8. B. Dubertret, N. Rivier, and M. A. Peshkin, J. Phys. A: Math. Gen. 31:879 (1998).
9. J. A. Glazier, S. P. Gross, and J. Stavans, Phys. Rev. A 36:306 (1987).

10. Y. Jiang, J. C. M. Mombach, and J. A. Glazier, Phys. Rev. E 52:R3333 (1995).
11. B. Levitan, Phys. Rev. Lett. 72:4057 (1994).
12. B. Levitan, E. Slepyan, O. Krichevsky, J. Stavans, and E. Domany, Phys. Rev. Lett. 73:756

(1994).
13. B. Levitan and E. Domany, Phys. Rev. E 54:2766 (1996).
14. F. T. Lewis, Anat. Rec. 38:341 (1928).
15. H. M. Ohlenbusch, T. Aste, B. Dubertret, and N. Rivier, Eur. Phys. J. B 2:211 (1998).
16. M. A. Peshkin, K. J. Strandburg, and N. Rivier, Phys. Rev. Lett. 67:1803 (1991).
17. N. Rivier, Foams and Emulsions, J. F. Sadoc and N. Rivier, eds. (Kluwer, 1997).
18. N. Rivier and T. Aste, Phil. Trans. Roy. Soc. A 354:2055 (1996).
19. H. J. Ruskin and Y. Feng, J. Phys.: Condens. Matter 7:L553 (1995).
20. H. J. Ruskin and Y. Feng, Physica A 230:455 (1996).
21. H. J. Ruskin and Y. Feng, Physica A 247:153 (1997).
22. J. Stavans, Rep. Prog. Phys. 56(6):733 (1993).
23. K. Y. Szeto and W. Y. Tam, Phys. Rev. E 53:4213 (1996).
24. U. Thiele, M. Mertig, W. Pompe, and H. Wendrock, Foams and Emulsions, J. F. Sadoc

and N. Rivier, eds. (Kluwer, 1997).
25. J. von Neumann, Metal Interfaces, Amer. Soc. for Metals, Vol. 108 (Cleveland, OH).
26. D. Weaire, Metallography 7:157 (1974).
27. D. Weaire and J. P. Kermode, Phil. Mag. B 48:245 (1983).
28. D. Weaire and H. Lei, Phil. Mag. Lett. 62:427 (1990).

272 Feng and Ruskin


